3-Hydrogenkwadaphnin induces monocytic differentiation and enhances retinoic acid-mediated granulocytic differentiation in NB4 cell line.

نویسندگان

  • Mohammad Amin Moosavi
  • Razieh Yazdanparast
  • Abbas Lotfi
چکیده

Recently, we have reported that 3-hydrogenkwadaphnin (3-HK), a diterpene ester isolated from Dendrostellera lessertii (Thymealeaceae), is very effective against leukemia cell lines without any detectable effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK induces G1 cell-cycle arrest, differentiation and apoptosis in APL NB4 cell line. Indeed, the drug between 24 to 96 h induced 7-65% growth inhibition of NB4 cells. Cell viability was also decreased by 2-55% between 24 to 96 h treatments with the drug, respectively. These effects of the drug were also dose-dependent. According to flow cytomtry results, 3-HK (15 nM) induced a significant G1-arrest up to 24 h which was consequently followed with appearance of sub-G(1) peak at 72 to 96 h. Hoechst 33258 staining and DNA fragmentation assays confirmed the occurrence of apoptosis among the treated cells. On the other hand, NBT reducing assay, Wright-Giemsa staining, phagocytic activity and expression of cell surface markers (CD11b and CD14) confirmed that the inhibition of proliferation is associated with differentiation especially toward macrophage-like morphology. Interestingly, 3-HK at 5 and 10 nM enhanced the effects of all-trans retinoic acid (ATRA) in NB4 cells. Based on these results, 3-HK might become an ideal candidate for treatment of APL patients pending full exploration of its biological functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells.

Programmed cell death-4 (PDCD4) is a recently discovered tumor suppressor protein that inhibits protein synthesis by suppression of translation initiation. We investigated the role and the regulation of PDCD4 in the terminal differentiation of acute myeloid leukemia (AML) cells. Expression of PDCD4 was markedly up-regulated during all-trans retinoic acid (ATRA)-induced granulocytic differentiat...

متن کامل

Inhibition of the NAD-Dependent Protein Deacetylase SIRT2 Induces Granulocytic Differentiation in Human Leukemia Cells

Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular different...

متن کامل

Combination of retinoic acid and tumor necrosis factor overcomes the maturation block in a variety of retinoic acid-resistant acute promyelocytic leukemia cells.

Retinoic acid (RA) overcomes the maturation block in t(15:17) acute promyelocytic leukemia (APL), leading to granulocytic differentiation. Patients receiving RA alone invariably develop RA resistance. RA-resistant cells can serve as useful models for the development of treatments for both APL and other leukemias. Previously, we showed that RA and tumor necrosis factor (TNF) promote monocytic di...

متن کامل

Differentiation-Inducing Activity of the Phyto-polyphenols Epigallocatechin-3-gallate and Kaempferol on NB4 Cells

Background and Objective: The rate of survival in acute promyelocytic leukemia (APL) can dramatically improve, if the patients receive all-trans-retinoic acid (ATRA) treatment. However, this drugchr('39')s toxicity is a major problem in APL treatment. Previous researches have demonstrated that phyto-polyphenols such as epigallocatechin gallate (EGCG) and kaempferol cause apoptosis in hematopoie...

متن کامل

Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression

Transcription factors that drive non-neoplastic myelomonocytic differentiation are well characterized but have not been systematically analyzed in the leukemic context. We investigated widely used, patient-derived myeloid leukemia cell lines with proclivity for differentiation into granulocytes by retinoic acid (RA) and/or monocytes by 1,25-dihyrdroxyvitamin D3 (D3). Using K562 (FAB M1), HL60 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biochemistry and molecular biology

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2006